A New Job for the EP Community Plumbing Electrical Dysfunction & Thromboembolism: Wireless "Boxes" and Protecting "Umbrellas"

Vivek Y. Reddy, MD Helmsley Trust Professor of Medicine Director, Cardiac Arrhythmia Service The Mount Sinai Hospital

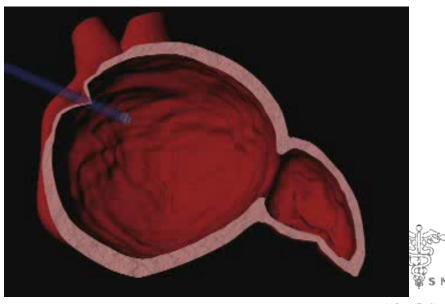
vivek.reddy@mountsinai.org

Disclosures

- Grant support and/or Consultant:
 - Boston Scientific Inc, Coherex Inc,
 EBR Systems, Medtronic Inc, St
 Jude Medical Inc

(I have no equity interest in LAAC or leadless pacing)

• I will be discussing non-approved devices.

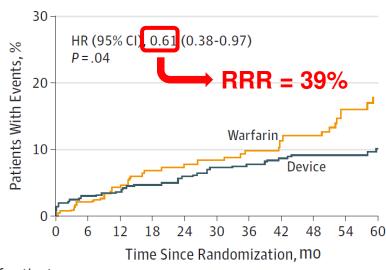


Stroke Risk in Atrial Fibrillation

FDA Labeling

- AF afflicts 5-7 million individuals in the U.S.
- Incidence of AF is increasing
- AF increases the risk of stroke by 6-fold
- Limitations to Oral Anticoagulants
- Led to Development of Mechanical LAA closure

PROTECT AF


Superiority of Watchman over Warfarin

 <u>RCT</u>: Can the WATCHMAN device replace Warfarin

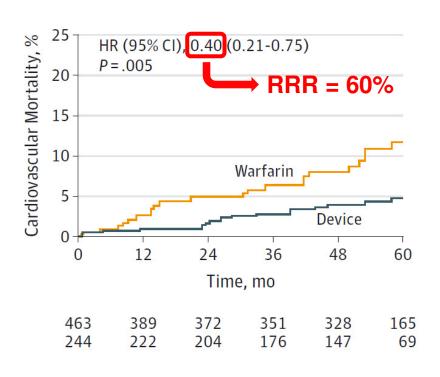
Non-Valvular AF CHADS₂ ≥ 1 Randomization (1:2) Anticoagulation Regimen Implant to 6 weeks Warfarin Aspirin Gweeks to 6 months Clopidogrel Aspirin After 6 months Aspirin

SCHOOL OF MEDICINE

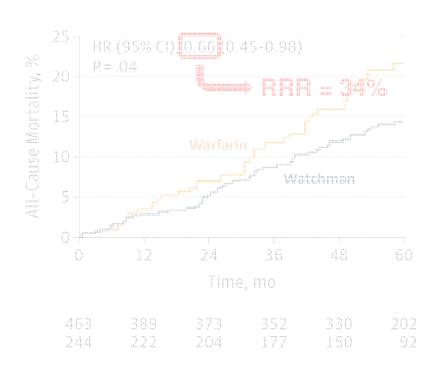
Primary Endpoint [Stroke / SE / CV Death]

No. of patients

Device 463 398 382 370 360 345 337 327 317 285 196


Warfarin 244 230 218 210 200 188 173 159 147 121 87

Hemorrhagic Stroke: 85%↓↓


PROTECT AF: Watchman vs Warfarin

Mortality Benefit with Watchman

CV Death

All-Cause Nortality

PROTECT-AF & PREVAIL

Combined Analysis

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY

© 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION
PUBLISHED BY ELSEVIER INC.

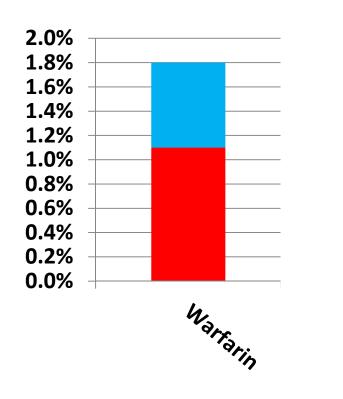
VOL. 65, NO. 24, 2015 ISSN 0735-1097/\$36.00

http://dx.doi.org/10.1016/j.jacc.2015.04.025

Left Atrial Appendage Closure as an Alternative to Warfarin for Stroke Prevention in Atrial Fibrillation

A Patient-Level Meta-Analysis

David R. Holmes, Jr, MD,* Shephal K. Doshi, MD,† Saibal Kar, MD,‡ Matthew J. Price, MD,§ Jose M. Sanchez, MD,∥ Horst Sievert, MD,¶ Miguel Valderrabano, MD,# Vivek Y. Reddy, MD**


Hazard Ratio (95% Cl)

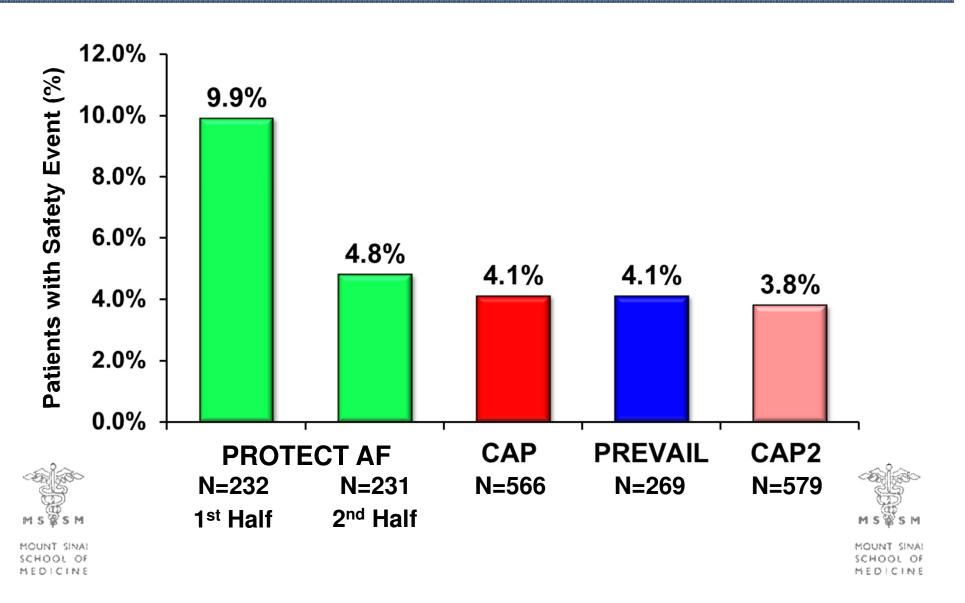
D.Holmes / V.Reddy JACC 65:2614 (2015)

Stroke Severity in PROTECT AF/PREVAIL

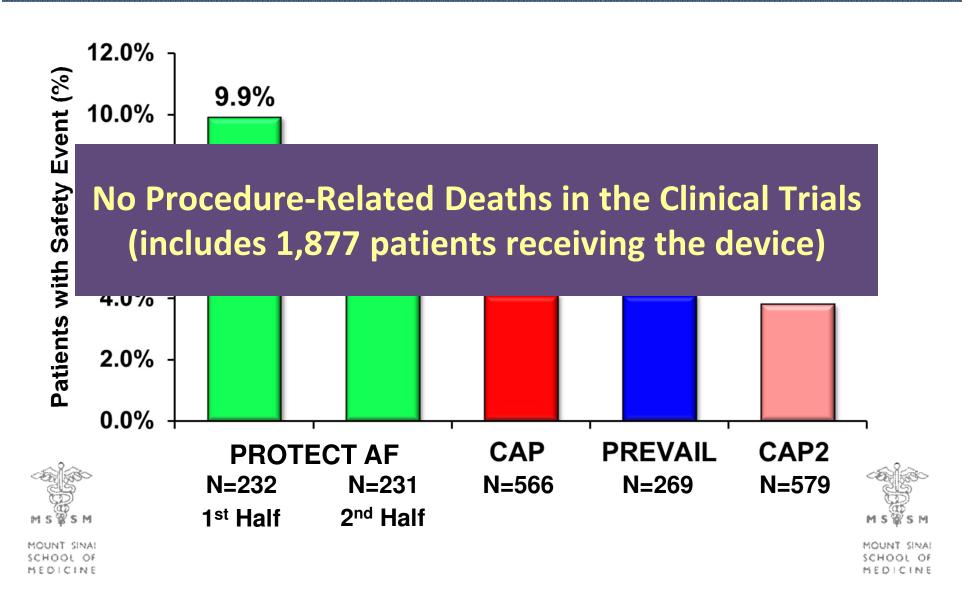
Non-Disabling vs Disabling/Fatal

Non-Disabling Stroke

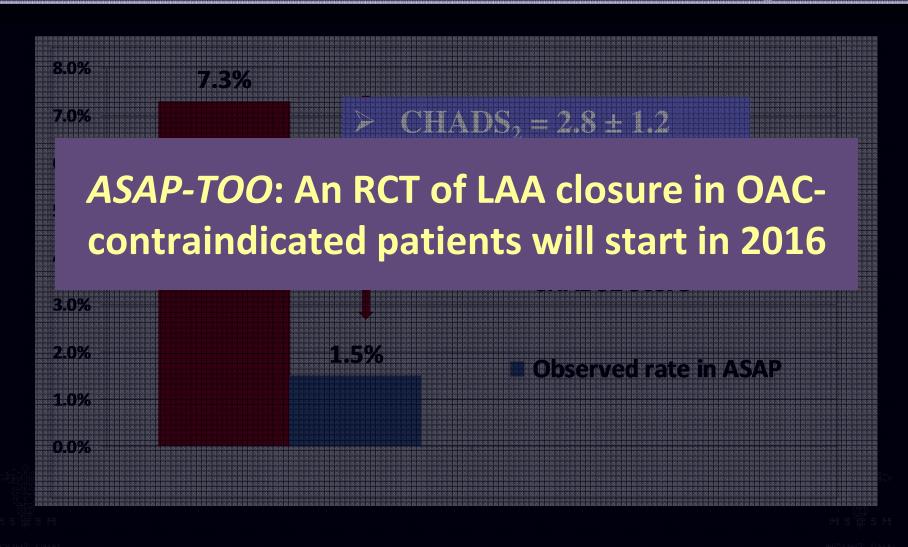
■ Disabling/Fatal Stroke



- Disabling stroke defined as MRS change of 2 or more or death
- Similar results if defined as absolute MRS > 2


Safety Events Across Trials

PROTECT AF, CAP, PREVAIL & CAP-1


Safety Events Across Trials

PROTECT AF, CAP, PREVAIL & CAP-1

ASAP Registry

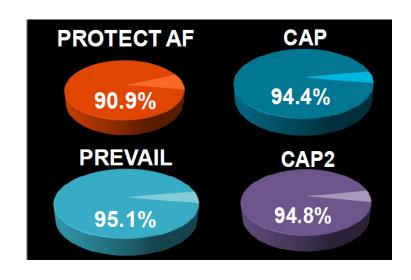
Contraindicated Pts (n=150): Watchman → ASA/Clop x 6 mo

What is Happening in the "Real World"?

EWOLUTION Registry

- Prospective, Multicenter (n=47),
 Non-randomized Registry
- Enrollment
 - Consecutive Watchman Patients
 - 47 sites: Europe, Russia, Middle East
 - From October 2013 May 2015
 - Total Enrollment = 1021 pts
- Follow-Up:
 - Normally 1-3 months post-implant
 - Annually for at least 2 years
 - OAC Regimen: Physician preference

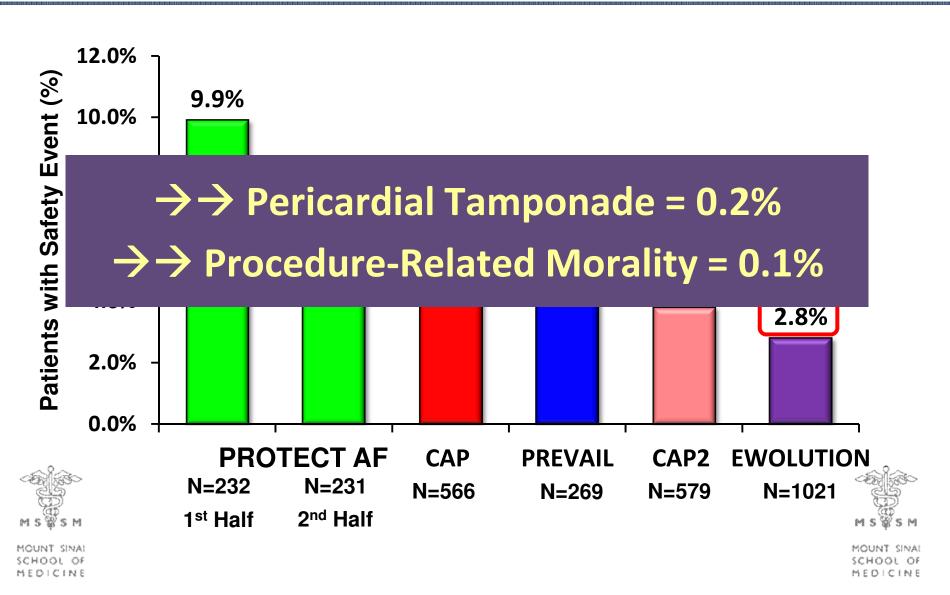
Characteristic	All Pts (N=1021)	
History of TIA	10.7%	
History of Ischemic Stroke	19.7%	
Previous Hemorrhagic Stroke	15.0%	
Prior Major or Predisposition Bleeding	38.7%	
Labile INRs	17.0%	
Concomitant Use of Drugs	27.8%	
Alcohol Abuse	4.2%	
CHADS ₂	2.8 ± 1.3	
CHA ₂ DS ₂ -VASC	4.5 ± 1.6	
HAS-BLED	2.3 ± 1.2	



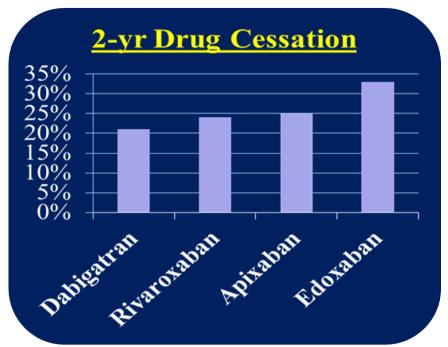
What is Happening in the "Real World"?

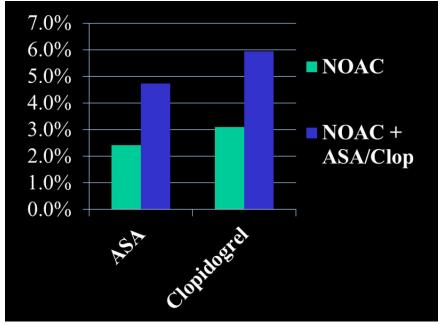
EWOLUTION Registry

What is implant success in the "real world"?


Comparison of proportions between all studies: p=<0.001

Safety Events Across Trials

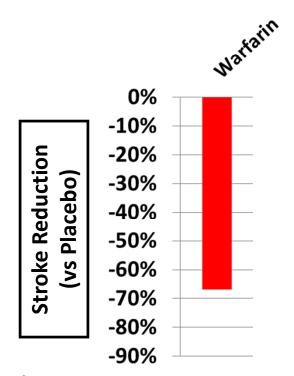

FDA Trials vs EWOLUTION



NOACs are Excellent Medications

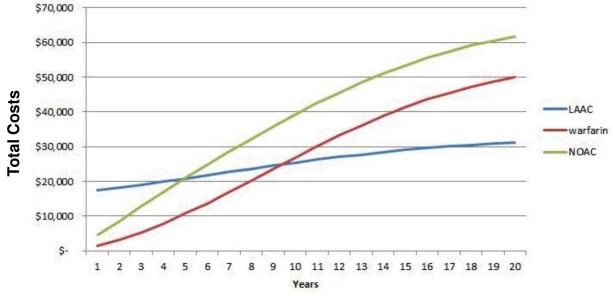
But Not for Everyone...

RELY: Major Bleeding



Preventing Stroke in Non-Valvular AF

Imputed Benefit of Different Strategies (vs Control)


* Reached statistical superiority relative to warfarin.

Economic Analysis: Cost Effectiveness

Watchman vs NOACs vs Warfarin

- Patient level Markov micro-simulation decision analytic model
- Assess Time-to-Cost Effectiveness (not just Lifetime horizon 20 yrs)
- Economic costs from the U.S. perspective, and costs in 2015 US\$
 - o For LAAC procedure, we used the new DRG 273/274 (US average: \$16,109)
- Latest PROTECT AF data (4 yrs f/u)
- NOAC meta-analysis of all 4 NOACs (Ruff et al, Lancet 383:955, 2014)
- Incorporated costs based on the level of disability resulting from strokes

Economic Analysis: Cost Effectiveness

Watchman vs NOACs vs Warfarin

- Patient level Markov micro-simulation decision analytic model
- Assess Time-to-Cost Effectiveness (not just Lifetime horizon 20 yrs)
- Economic costs from the U.S. perspective, and costs in 2015 US\$
 - For LAAC procedure, we used the new DRG 273/274 (US average: \$16,109)
- Latest PROTECT AF data (4 yrs f/u)
- NOAC meta-analysis of all 4 NOACs (Ruff et al, Lancet 383:955, 2014)
- Incorporated costs based on the level of disability resulting from strokes

	Time to Cost Effectiveness (Cost/QALY)	Time to Dominance (More Effective, Less Costly)	
LAAC vs warfarin	Year 7 (\$42,994/QALY)	Year 10	
NOACs vs warfarin	Year 16 (\$48,446/QALY)	N/A Year 5	
LAAC vs NOACs	Year 5 (Dominant)		

The Watchman Device FDA Approval in March 2015

- ➤ Watchman is indicated to reduce the risk of thromboembolism from the left atrial appendage in patients with non-valvular atrial fibrillation who are:
 - 1. At increased risk for stroke and systemic embolism based on CHADS2 or CHA2DS2-VASc scores
 - 2. Are suitable for warfarin
 - 3. And have an appropriate rationale to seek a non-pharmacologic alternative to warfarin, taking into account the safety and effectiveness of the device compared to warfarin.

In whom should LAAC be employed?

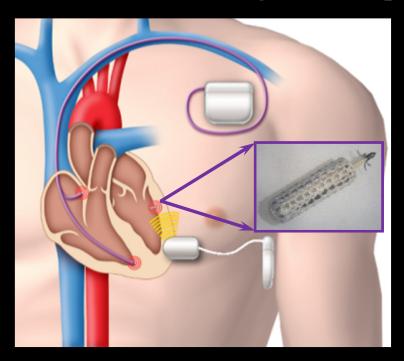
Criteria that We Consider in the U.S.

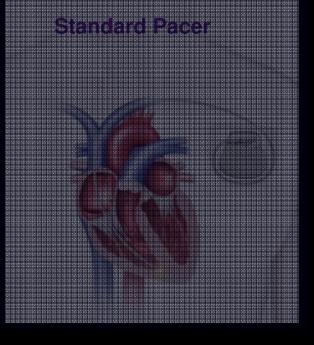
- 1. Patients with a history of bleeding (though not prohibitive bleeding: intra-cranial/ocular bleeding)
- 2. Patients at high risk for bleeding (eg, CAD patients taking anti-platelet agents)
- 3. Elderly patients
- 4. Patients with embolic events while on therapeutic OAC
- 5. Patients with renal dysfunction (especially dialysis pts)
 - WatchAFIB
- 6. Important lifestyle issues
 - Patient preference

Final Thoughts

LA Appendage Closure & Stroke Prevention

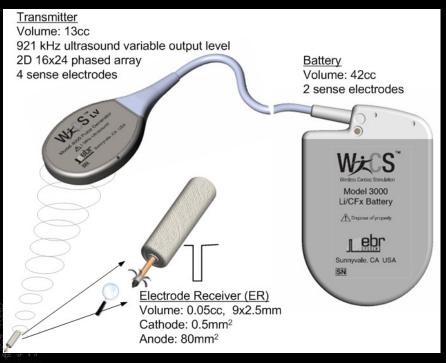
- ~40% of patients are not protected against stroke w/ OACs
 - Especially elderly individuals
- "Local" therapy with LAA closure is comparable to Warfarin
 - LAAC less effective in preventing Ischemic Strokes, but balanced by fewer Hemorrhagic Strokes
 - Over 50% reduction in Disabling Strokes
 - Over 50% reduction in Cardiovascular Mortality
- Safety improves with Operator Experience
 - Tamponade Rate: 5% [PROTECT AF] → 1-2% [CAP/PREVAIL/CAP-2]
 - $\rightarrow 0.2\%$ [EWOLUTION]

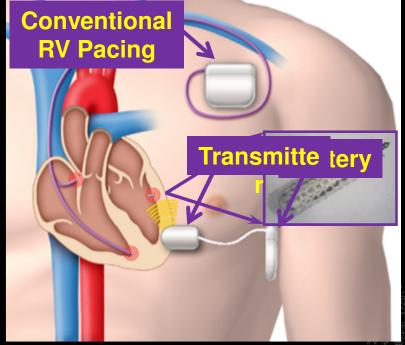



US Clinical Experience – (pending)

Leadless Pacing Two Paradigms

- LV leadless pacing with subcutaneous generator
 - Subcutaneous generator: Transmits USN energy to LV
 - LV "pellet": Transduces USN energy to pacing output
- Leadless Pacemakers
 - Self-contained system to replace RV pacing



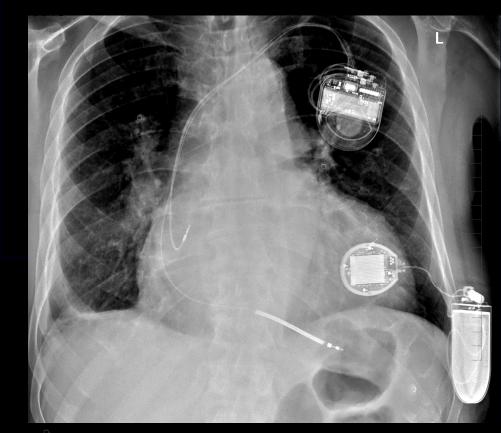


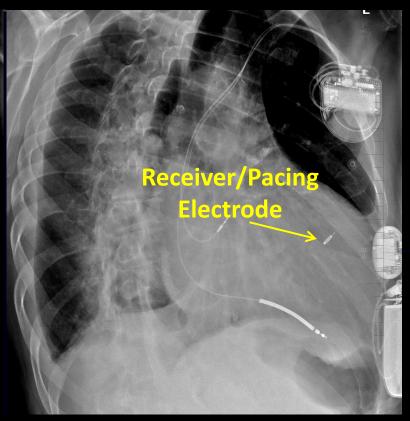
WiSE-LV Pacing System Introduction

- LV leadless pacing with subcutaneous generator
 - Subcutaneous generator: Transmits USN energy to LV
 - LV "pellet": Transduces USN energy to pacing output

WiSE-LV Pacing System

Pacing Electrode Implantation Procedure

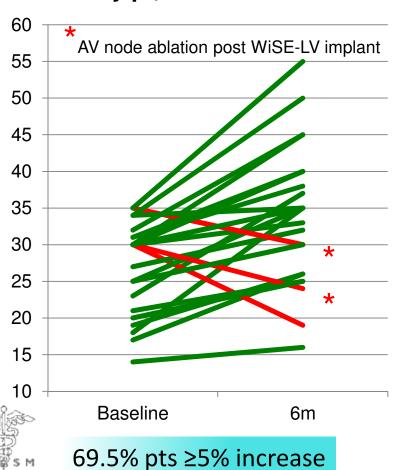




MOUNT SINAL SCHOOL OF MEDICINE

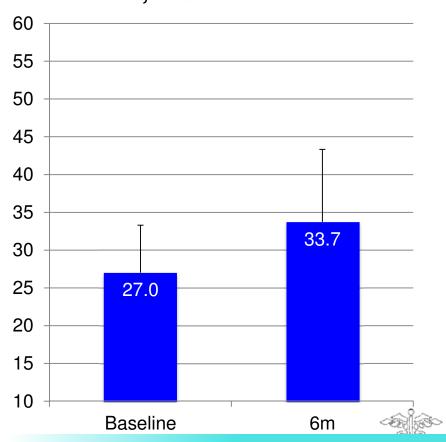
WiCS-LV System

HOURT SMA SCHOOL OF MEDICINE



MOUNT SINU SCHOOL OF MEDICINE

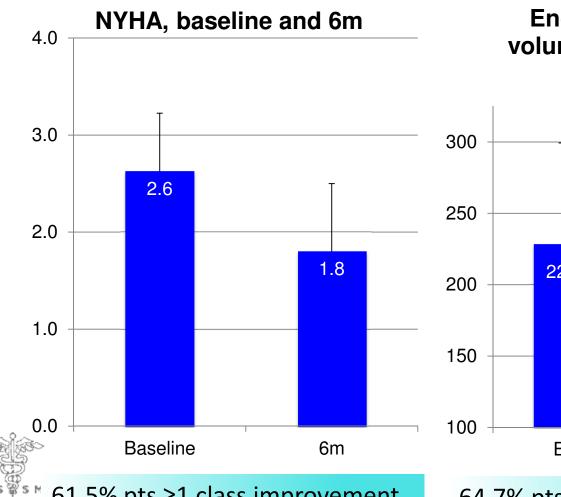
SELECT-LV Study


Preliminary efficacy - Ejection fraction

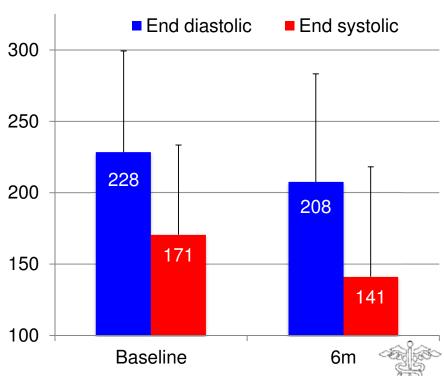
EF% by pt, baseline and 6m

MEDICINE

EF%, baseline and 6m


Mean \pm SD difference at 6m = 6.7 \pm 7.6 Excl. AV node ablations = 7.9 \pm 6.8

Reddy VY et al, HRS Scientific Sessions, LBCT (May 2015)

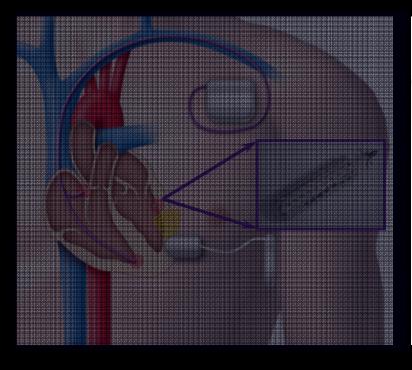

MEDICINE

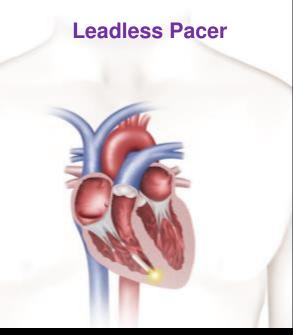
SELECT-LV Study

Efficacy – NYHA Class and LV Dimensions

End systolic and diastolic volumes, ml, baseline and 6m

61.5% pts ≥1 class improvement


SCHOOL OF


MEDICINE

64.7% pts ≥ 15% improvement in LVESV

Leadless Pacing Two Approaches

- LV leadless pacing with subcutaneous generator
 - Subcutaneous generator: Transmits USN energy to LV
 - LV "pellet": Transduces USN energy to pacing output
- Leadless Pacemakers
 - Self-contained system to replace RV pacing

Leadless Ventricular Pacemakers

Device Options

Nanostim Micra

MOUNT SINAL SCHOOL OF MEDICINE

Reddy VY, Exner DV, Cantillon DJ et al, *N Engl J Med 373*:1125-1135 (2015) Reynolds D, Duray GZ, Omar R et al, *N Engl J Med* doi:10.1056/NEJMoa1511643 (2015)

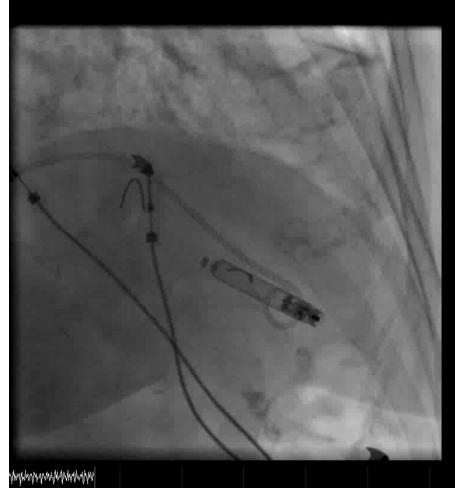
MOUNT SINAL SCHOOL OF MEDICINE

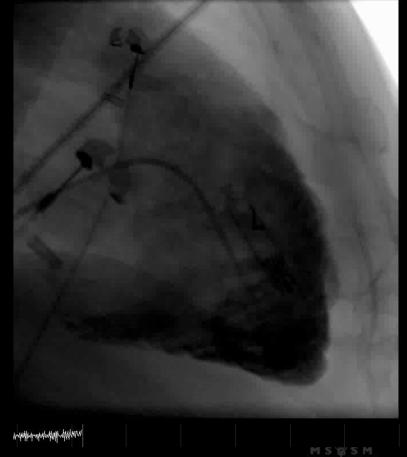
Leadless Ventricular Pacemakers

Nanostim & Micra

TABLE 1 Characteristics of the LCP and TCP					
Parameter	Nanostim	Micra			
Polarity	Bipolar	Bipolar			
Pacing modes	VVI (R)	VVI (R)			
Rate modulation mechanism	Blood temperature	3-axis accelerometer			
Battery technology	Lithium carbon monofluoride	Lithium silver vanadium oxide / carbon monofluoride			
Programmer	St. Jude Medical, model 3650	Medtronic, model 2090			
Energy capacity (mAh)	248	120			
Estimated longevity					
ISO standard, yrs*	9.8 yrs	4.7 yrs			
Alternative setting, yrs†	14.7 yrs	9.6 yrs			
Size (h \times w), maximum thickness, mm	42 mm \times 5.99 mm	25.9 mm \times 6.7 mm			
Volume (cc)	1.0	0.8			
Fixation mechanism	Helix (screw-in)	Tines			

*Longevity based on fixed programming at the ISO International Organization for Standardization (ISO 14708) standard guidelines for reporting pacemaker battery duration longevity: 2.5 V, 0.4 ms, 600 Ω , 60 beats/min, and 100% pacing. †Longevity based on nominal settings (for the TCP): 1.5 V, 0.24 ms, 60 beats/min (with an impedance load of 500 ohms and 100% pacing).


 $\label{eq:LCP} \textit{LCP} = \textit{leadless cardiac pacemaker; TCP} = \textit{transcatheter pacing system.}$



Leadless Pacemaker System: Nanostim Implantation Procedure

Leadless Pacemaker Case Device Implanted

MOUNT SNA: SCHOOL OF MEDICINE MOUNT SMAR SCHOOL OF MEDICINE

First-in-Man Study of Leadless Pacing

LEADLESS: A 3-Center, 33-Patient Study

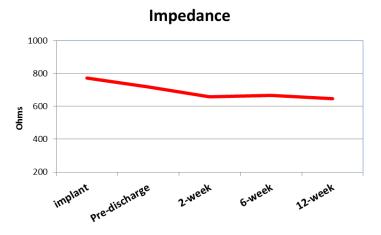
Original Article

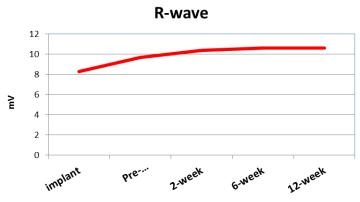
Permanent Leadless Cardiac Pacing Results of the LEADLESS Trial

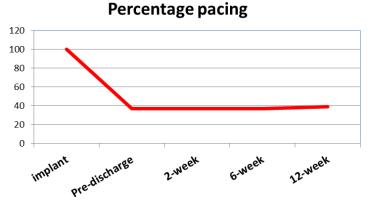
Vivek Y. Reddy, MD; Reinoud E. Knops, MD; Johannes Sperzel, MD; Marc A. Miller, MD; Jan Petru, MD; Jaroslav Simon, MD; Lucie Sediva, MD; Joris R. de Groot, MD, PhD; Fleur V.Y. Tjong, MD; Peter Jacobson, BS; Alan Ostrosff, MS; Srinivas R. Dukkipati, MD; Jacob S. Koruth, MD; Arthur A.M. Wilde, MD, PhD; Josef Kautzner, MD, PhD; Petr Neuzil, MD, PhD

Early performance of a miniaturized leadless cardiac pacemaker: the Micra Transcatheter Pacing Study

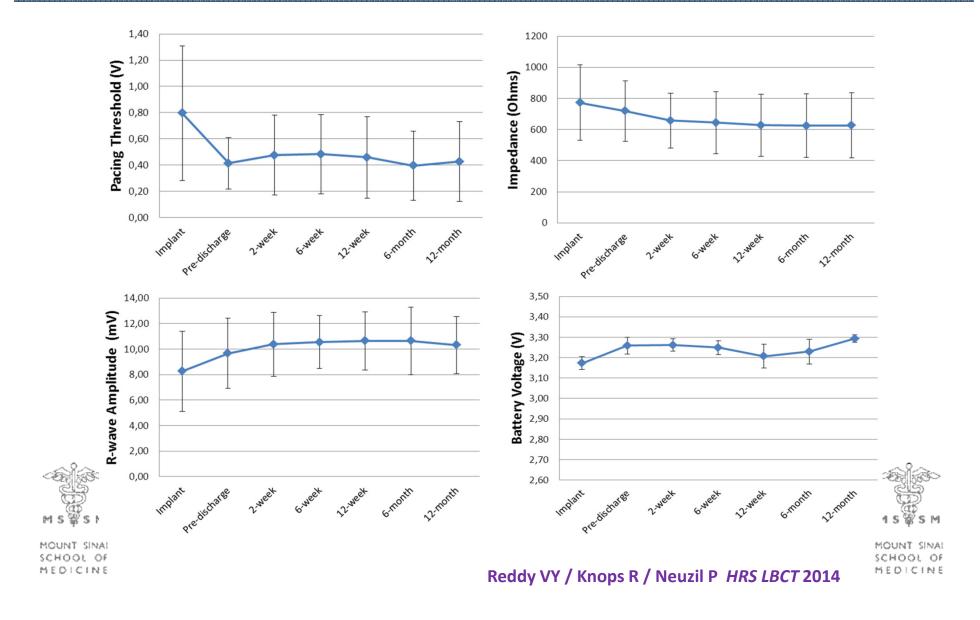
Philippe Ritter^{1*}, Gabor Z. Duray², Clemens Steinwender³, Kyoko Soejima⁴, Razali Omar⁵, Lluís Mont⁶, Lucas VA Boersma⁷, Reinoud E. Knops⁸, Larry Chinitz⁹, Shu Zhang¹⁰, Calambur Narasimhan¹¹, John Hummel¹², Michael Lloyd¹³, Timothy Alexander Simmers¹⁴, Andrew Voigt¹⁵, Verla Laager¹⁶, Kurt Stromberg¹⁶, Matthew D. Bonner¹⁶, Todd J. Sheldon¹⁶, and Dwight Reynolds¹⁷, Micra Transcatheter Pacing Study Group


MOUNT SINAL SCHOOL OF MEDICINE




First-in-Man Study of Leadless Pacing

LEADLESS: A 3-Center, 33-Patient Study



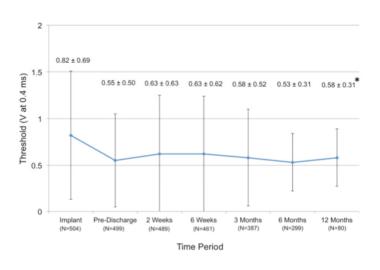
LEADLESS Study

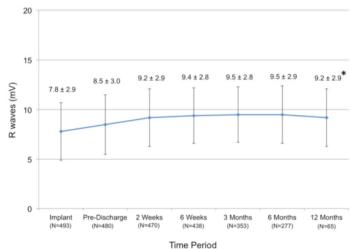
One-Year Device Performance

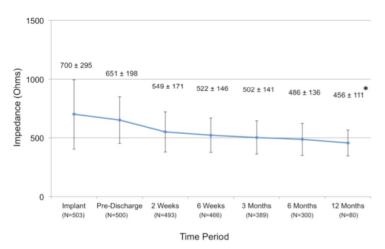
Leadless II IDE Clinical Trial

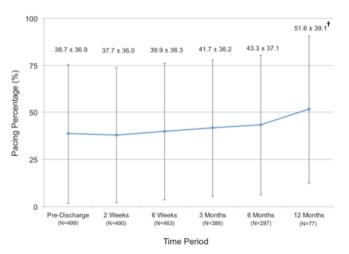
Procedural Characteristics

Characteristic	Primary Cohort (N = 300)	Total Cohort (N = 526)				
Procedural characteristics §						
Successful Implantation	96.3%	95.8%				
Duration of implantation — min						
Total: sheath insertion to removal	50.0±27.3	46.5±25.3				
Procedure: insertion of delivery catheter to removal	30.4±18.2	28.6±17.8				
Duration of fluoroscopy — min	14.9±9.4	13.9±9.1				
Device repositioning — no. of patients/total no. (%)						
None	199/289 (68.9)	354/504 (70.2)				
1	53/289 (18.3)	89/504 (17.7)				
2	24/289 (8.3)	39/504 (7.7)				
>2	13/289 (4.5)	22/504 (4.4)				
Final device position in right ventricle — no. of patients/ total no. (%)						
Apex	140/289 (48.4)	192/504 (38.1)				
Apical septum	5/289 (1.7)	96/504 (19.0)				
Outflow, septum, or other	144/289 (49.8)	215/504 (42.7)				
Missing data	0/289	1/504 (0.2)				



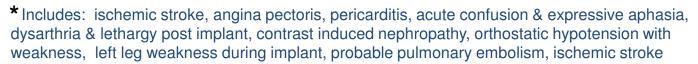



MOUNT SINAL SCHOOL OF MEDICINE


Leadless II IDE Clinical Trial

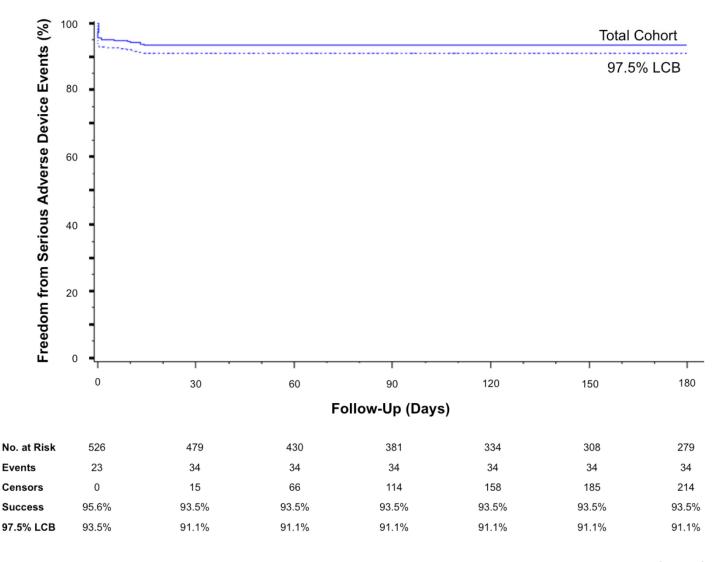
Device Electrical Measurements

MEDICINE


MOUNT SINAL SCHOOL OF MEDICINE

Device-Related SAEs

Event	Primary Cohort (N = 300)			Total Cohort (N = 526)		
	No. of Events	No. of Patients	Event Rate	No. of Events	No. of Patients	Event Rate
			%			%
Total	22	20	6.7	40	34	6.5
Cardiac perforation	4	4	1.3	8	8	1.5
Cardiac tamponade with intervention	1	1	0.3	5	5	1.0
Cardiac perforation requiring intervention	1	1	0.3	1	1	0.2
Pericardial effusion with no intervention	2	2	0.7	2	2	0.4
Vascular complication	4	4	1.3	6	6	1.1
Arrhythmia during device implantation	2	2	0.6	3	3	0.6
Cardiopulmonary arrest during implantation procedure	0	0	0	1	1	0.2
Device dislodgement	5	5	1.7	6	6	1.1
Device migration during implantation owing to inadequate fixation	0	0	0	2	2	0.4
Pacing threshold elevation with retrieval and implantation of new device	4	4	1.3	4	4	0.8


Other

M S S M MOUNT SINAL SCHOOL OF MEDICINE

Freedom from SADEs

Total Cohort (n=526)

MEDICINE

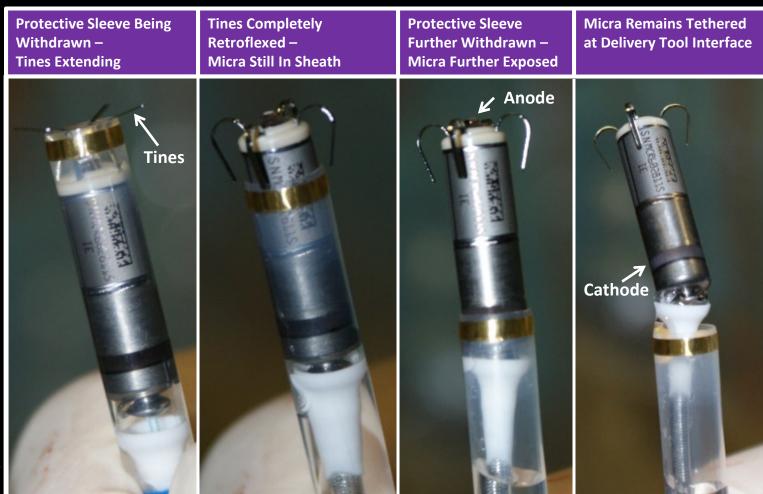
MEDICINE

Reddy VY, Exner DV, Cantillon DJ et al, N Engl J Med 373:1125-1135 (2015)

Battery Longevity: Projected vs "Observed"

Percent Pacing (%)	Battery Longevity (Years)*					
	500 Ohm Load	600 Ohm Load				
100	8.8	9.8				
75	10.6	11.7				
50	13.3	14.5				
25	17.9	18.9				

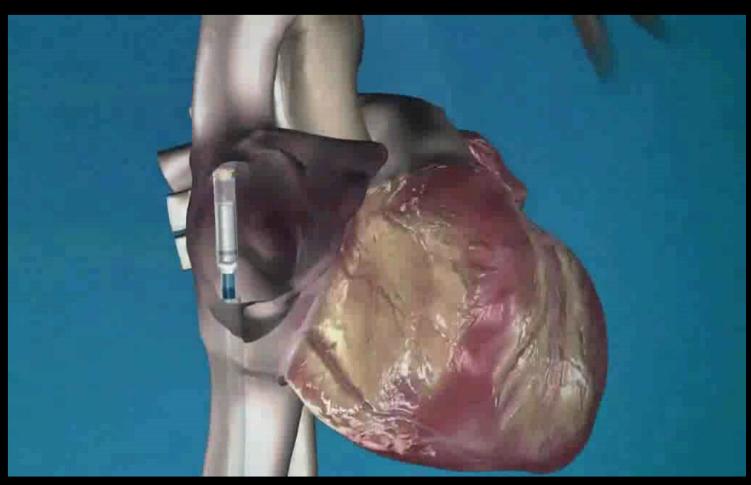
^{*} Assuming VVIR at 60 bpm, and output 2.5 V at 0.4 ms


SCHOOL OF

MEDICINE

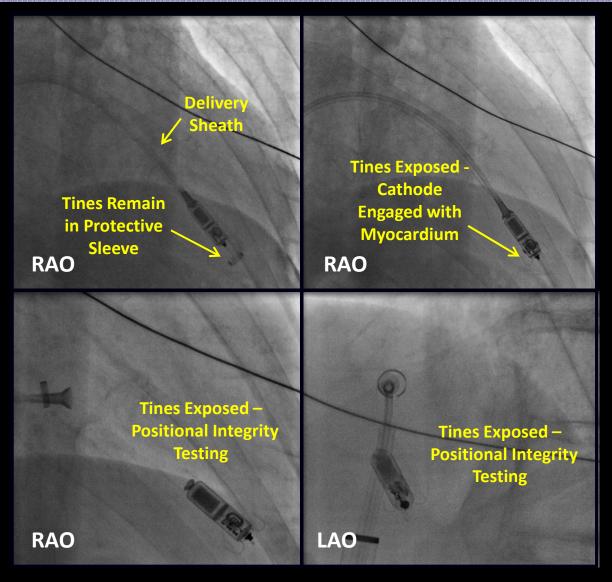
Based on electrical parameters in the Primary Cohort, the battery longevity is estimated at 15.0 ± 6.7 yrs (95% CI, 14.2 to 15.8 yrs).

Leadless Cardiac Pacemaker: Micra Device Deployment

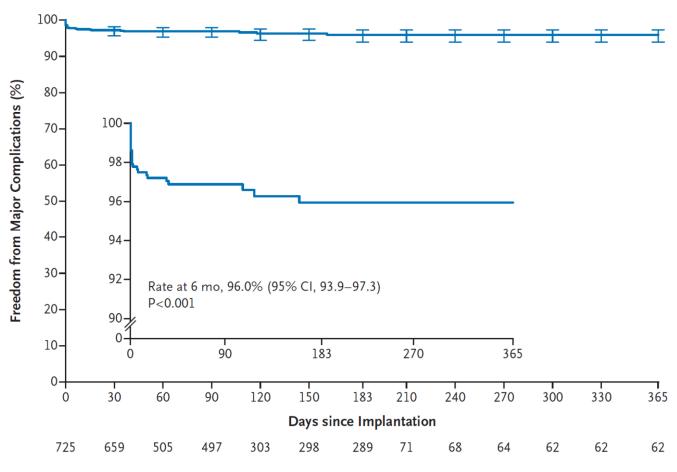


MOUNT SMAL SCHOOL OF MEDICINE

MOUNT SNAL SCHOOL OF MEDICINE


Leadless Cardiac Pacemaker: Micra Device Deployment

Micra Deployment Clinical Case Example



Micra IDE Clinical Trial

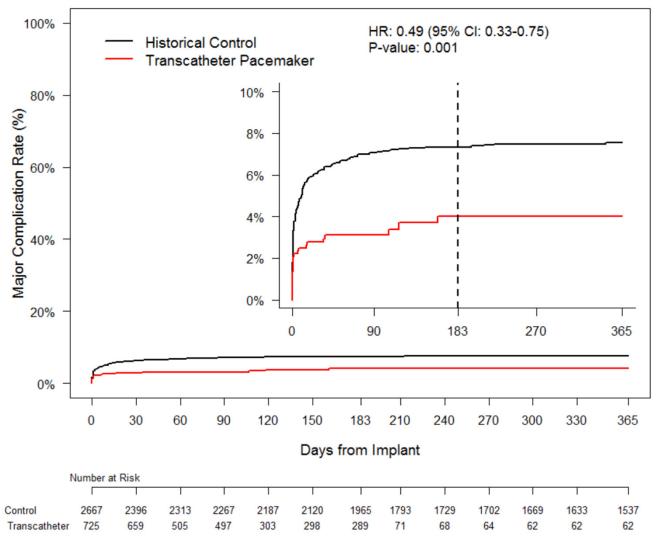
Freedom From Major Complications (n=725)

M S W S M

MOUNT SINAL SCHOOL OF MEDICINE

Micra IDE Clinical Trial

Device-Related Complications


Adverse Event	No. of Events Associated with Major Complication Criterion*					No. of Patients (%)†	
Death	Loss of Device Function	Hospitalization	Prolonged Hospitalization‡	System Revision	Total Events		
Embolism and thrombosis	0	0	1	1	0	2	2 (0.3)
Deep vein thrombosis	0	0	0	1	0	1	1 (0.1)
Pulmonary thromboembolism	0	0	1	0	0	1	1 (0.1)
Events at groin puncture site: atrioventricular fistula or pseudoaneurysm	0	0	2	3	0	5	5 (0.7)
Traumatic cardiac injury: cardiac perforation or effusion	0	0	3	9	0	11	11 (1.6)
Pacing issues: elevated thresholds	0	1	2	1	2	2	2 (0.3)
Other events	1	0	5	4	1	8	8 (1.7)
Acute myocardial infarction	0	0	0	1	0	1	1 (0.1)
Cardiac failure	0	0	3	2	0	3	3 (0.9)
Metabolic acidosis	1	0	0	0	0	1	1 (0.1)
Pacemaker syndrome	0	0	1	0	1	1	1 (0.2)
Presyncope	0	0	0	1	0	1	1 (0.1)
Syncope	0	0	1	0	0	1	1 (0.1)
Total	1	1	13	18	3	28	25 (4.0)

NI- C

Micra IDE Complications

Comparison to Matched Historical Control

MOUNT SINAL

SCHOOL OF

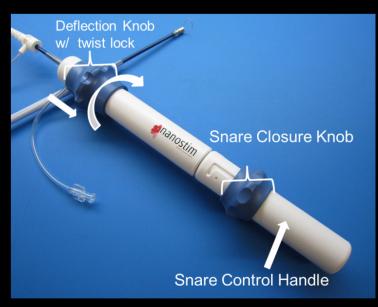
MEDICINE

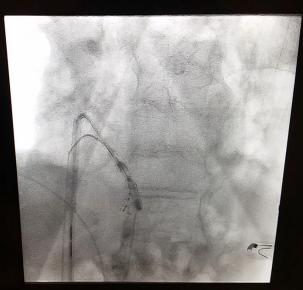
MOUNT SINAL

SCHOOL OF

MEDICINE

Leadless Pacemakers Limitations

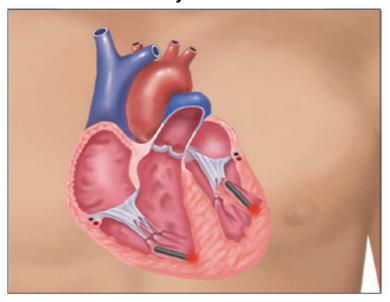

- Both observational studies (not Randomized)
- ➤ Mean Follow-Up only ~6 months
- ➤ How to manage device after battery depletion?
 - o Possible to retrieve after ~1 year, but what about 5, 10, 15 yrs?
 - Retrieval vs Abandonment
- Limited device diagnostics (eg, no electrogram data)
- Large venous sheath (18Fr-21Fr)
 - Now increasingly common used for cardiology procedures
 - Low observed rate of hematomas
- Single-chamber (RV) pacing only
 - Device-to-device communication is in development ...



Retrieveability of Chronically-Implanted Devices

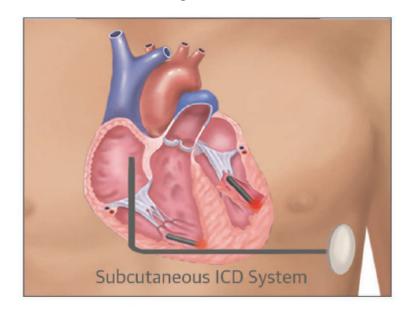
Retrieveability of Chronically-Implanted Devices

- Retrieval of 7 implanted devices \rightarrow 100% success without complications
- Time from implant: 160 ± 180 days (Range = 1 to 413 days)
- Reasons for retrieval
 - Elevated Pacing Thresholds = 4 pts
 - \triangleright Worsening CHF = 2 pts
 - ➤ Elective Explantation = 1 pt
- Reddy VY, Exner DV, Cantillon DJ et al, N Engl J Med 373:1125-1135 (2015)



LV Pacing: Leadless Pacemakers?

Potentiated by Device-to-Device Communication


Bradycardia

Cardiac Resynchronization

Sudden Cardiac Death

CRT-D

